Quantitative real-time RT-PCR using hybridization probes and imported standard curves for cytokine gene expression analysis.
نویسندگان
چکیده
Quantitative real-time or kinetic RT-PCR is increasingly used for the quantification of specific mRNA targets, especially in clinical applications. To quantify the mRNA of cytokines and their receptors, which play important roles in the pathogenesis of autoimmune diseases such as multiple sclerosis, we have developed quantitative two-step RT-PCR assays for IL-4, IL-4R, IFN-gamma, IFN-beta, and the housekeeping gene porphobilinogen deaminase (PBGD). The LightCycler system was used to quantify the copy numbers with the sequence-specific hybridization probe detection format. The quantification was carried out on the basis of standard curves generated with external homologous plasmids for each different parameter in relation to the gene expression of PBGD. Therefore, this procedure represents a relative quantification method with external standards, as the standard curves were used to obtain an absolute value for the copy numbers of the targets and the reference (PBGD). The new software version 3.5 of the LightCycler system allows the construction of a single parameter-dependent plasmid standard curve for the quantification of unknown samples from different runs. Here we demonstrate how to achieve precise and reproducible quantification, even when using measurements from different PCR runs.
منابع مشابه
Fluorescent in Situ Hybridization and Real-Time Quantitative Polymerase Chain Reaction to Evaluate HER-2/neu Status in Breast Cancer
Background:Breast cancer remains the most common and second lethal cancer in females. HER-2/neu is one of the most important amplified oncogene in breast cancer. The amplification of HER-2 is correlated with decreased survival, metastasis, and early recurrence. The amplification of HER-2/neu gene and synthesis of th...
متن کاملAbsolute quantification of murine interleukine-4, interleukine- 10 and interferon-γ gene transcripts using Real Time PCR
The study of cytokines gene expression is quite important in various conditions of health and disease for the evaluation of clinical responses to new vaccination approaches. An absolute quantification is based on a calibration curve and production of standard controls to achieve more reliable results than in relative system. In this study we attempted to construct standard controls to evaluate ...
متن کاملUse of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies.
Real-time reverse transcription polymerase chain reaction (RT-PCR) methods that monitor product accumulation were adapted for the validation of differentially expressed genes. We describe a real-time quantitative PCR assay that uses SYBR Green I dye-based detection and product melting curve analysis to validate differentially expressed genes identified by gene expression profiling technologies....
متن کاملValidation of a genus-specific gene; TPS, used as internal control in quantitative Real Time PCR of transgenic cotton
Identification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition.We report here the validation of internal control gene i.e.TPS (trehalose 6-phosphate-synthase) in cotton (Gossypium spp), using TaqMan sy...
متن کاملRapid quantification of drug resistance gene expression in Candida albicans by reverse transcriptase LightCycler PCR and fluorescent probe hybridization.
We developed a rapid, sensitive, and reproducible assay to quantify Candida albicans ACT1, CDR1, CDR2, ERG11, and MDR1 mRNA using a two-step reverse transcription and LightCycler real-time PCR (RT-LightCycler PCR) method with sequence-specific hybridization probes. We compared RT-LightCycler PCR with Northern hybridization for quantitative analysis of gene expression in isolates with various fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioTechniques
دوره 33 5 شماره
صفحات -
تاریخ انتشار 2002